Towards the synthesis of the squalestatins/zaragozic acids: Synthesis of an advanced intermediate and introduction of the $\mathbf{C}-1$ sidechain

Robert K. Mann, Jack G. Parsons and Mark A. Rizzacasa*
School of Chemistry, The University of Melbourne, Parkville Victoria, 3052, Australia

Abstract

A highly convergent synthesis of a squalestatin/zaragozic acid A C-4-decarboxydeoxy intermediate has been achieved. The key step involves the construction of the $\mathrm{C}-1-\mathrm{C}-1^{\prime}$ bond by the addition of a fully functionalized C -1 sidechain anion (derived from iodide 34) to a bicyclic core precursor lactone 24 which provides the lactols 35 . Mild acid-induced deprotection and ring closure gives the 2,8-dioxabicyclo[3.2.1]octane 36 as a $3: 1$ mixture of C-3 epimers. Two-step oxidation of the C-3 alcohol to the acid followed by esterification then gives the ester 37 as the only diastereoisomer. The C-1 sidechain 34 has been synthesized in 11 steps from butane-1,4-diol while lactone 24 has been synthesized in 13 steps from the D-mannose-derived alcohol 14.

Introduction

The squalestatins ${ }^{1}$ and zaragozic acids ${ }^{2}$ are a group of related compounds isolated from several fungal species that have been shown to be in vivo picomolar inhibitors of mammalian squalene synthetase, ${ }^{3}$ the enzyme which catalyses the dimerization of farnesyl pyrophosphate to squalene. ${ }^{4}$ Therefore, these compounds show promise for use in the treatment of high serum-cholesterol levels and have attracted the attention of many synthetic research groups. ${ }^{5}$ Numerous approaches towards the highly substituted 2,8 -dioxabicyclo[3.2.1] octane core common to all these compounds have been reported, ${ }^{6}$ and in 1994 the first total syntheses of zaragozic acid C 2 by Carreira ${ }^{7}$ and of squalestatin S1/zaragozic acid A 1 by Nicolaou's group ${ }^{8}$ where reported, closely followed by a total synthesis of zaragozic acid C 2 by Evans et al. ${ }^{9}$ Recently, Heathcock and co-workers have also reported a total synthesis of squalestatin S1/zaragozic acid A 1, ${ }^{10}$ while Hashimoto's group has achieved a synthesis of zaragozic acid C. ${ }^{11}$

Extensive structure-activity relationship studies have been conducted on naturally derived analogues as well as analogues obtained from biosynthetic feeding. ${ }^{12}$ One finding of these studies is that the C-5 free acid is essential for activity. Furthermore, either of the $\mathrm{C}-4$ and $\mathrm{C}-3$ acids as well as the $\mathrm{C}-4$ hydroxy group can be protected ${ }^{13}$ or removed ${ }^{14}$ while the C-1 sidechain should be six atoms in length and terminate in an aromatic ring. ${ }^{15}$ However, it should be noted that these changes are not necessarily independent.

Retrosynthetic analysis

A retrosynthetic approach towards squalestatin H1 I, the simplest member of this class of natural products, is depicted in Scheme 1. Along with the synthesis of the naturally occurring

II
$\mathrm{R}=\mathrm{CO}_{2} \mathrm{Bu}^{t}$ or $\mathrm{CH}_{2} \mathrm{OP}$

III

IV X $=\mathrm{Li}$ VI $X=1$
VI $=1$

V

Scheme 1 Retrosynthetic analysis of squalestatin H1 I
compounds, another goal was the production of simplified analogues from a common intermediate. It was envisaged that squalestatin H1 I, which may also be converted into squalestatin S1/zaragozic acid A 1 by selective C-6 acylation, ${ }^{7 b}$ could be derived from an intermediate lactol such as II by acid-induced deprotection and ring closure. Introduction of the $\mathrm{C}-1-\mathrm{C}-1^{\prime}$ bond could be then achieved in a highly convergent manner by addition of anion IV to a lactone III and, during the course of our work, ${ }^{16}$ this $\mathrm{C}-1-\mathrm{C}-1^{\prime}$ bond-formation approach was successfully utilized in the synthesis of zaragozic acid C 2 by

Evans ${ }^{9}$ as well as the Heathcock synthesis of squalestatin S1/ zaragozic acid A $1 .{ }^{10}$ We now report the application of this approach using a simplified protected lactone such as compound \mathbf{V} for a core precursor and iodide VI as a precursor to a sidechain anion.

Results and discussion

Introduction of the $\mathbf{C - 5}$ stereocentre

Initially, attention was focussed on the introduction of the C-5 stereocentre owing to the biological importance of the acid functionality at this position. It was envisaged that the C-4-C-5 bond (squalestatin/zaragozic acid numbering) could be constructed in a stereoselective manner by a [3,3]-sigmatropic rearrangement of a silyl ketene ketal (Ireland-Claisen rearrangement) ${ }^{17}$ derived from an appropriate carbohydrate precursor. As shown in Scheme 2, enolization and silylation of a D-xylo or D-lyxofuranoside allyl ester (path \boldsymbol{A}), derived from either D-glucose or D-mannose respectively, and subsequent rearrangement from the β-face would introduce the $\mathrm{C}-5$ stereocentre. An attractive aspect of this approach is that both the C-5 centre and the entire carbon skeleton of the bicyclic core can be introduced by the formation of only one carbon-carbon bond. It should also be noted that the possible major problem of β-elimination (path \boldsymbol{B}) has been addressed in similar systems. Under certain conditions ($-100^{\circ} \mathrm{C}$; TMSCl-HMPA cosolvent) enolate O-silylation can be achieved in the presence of a β-leaving group. ${ }^{18,19}$ Although the D -glucose-derived ester has the required stereochemistry at C-6 and C-7, the selectivity of the rearrangement may not be adequate. A D-lyxofuranoside ester, which possesses a more sterically hindered α-face, is an alternative substrate but an inversion at $\mathrm{C}-7$ would be required at some stage.

Our study began with the crystalline D-xylofuranuronic acid 3, which is prepared in 5 steps from diacetone-D-glucose according to the published procedure. ${ }^{20}$ Conversion to the ester via the acid chloride provided Ireland-Claisen substrate $\mathbf{4}$ in excellent yield (Scheme 3). When a mixture of allyl ester 4, TMSCl and HMPA in THF at $-100^{\circ} \mathrm{C}$ was treated with a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of LDA in THF and allowed to warm to RT, three major products were isolated after base hydrolysis and esterification. The esters $\mathbf{5 a}$ and $\mathbf{5 b}$ were obtained in a combined yield of 47% along with varying amounts of glycal 6 resulting from β-elimination. This reaction was particularly capricious and great care had to be taken in the rate of addition of the base and the temperature. On some occasions, the glycal $\mathbf{6}$ was the major product and little or no rearrangement product was isol-
ated. A number of different conditions were also tried but with similar or worse results. Although the diastereoisomers 5a and $\mathbf{5 b}$ could be separated by flash chromatography, the minor product 5a was contaminated with silylated by-products and was fully characterized by reduction to the corresponding alcohol. Furthermore, the major product possessed the undesired stereochemistry at C-5 as shown by conversion to the bicycle $\mathbf{1 1}$ according to the following sequence: Reduction of the ester $\mathbf{5 b}$ provided alcohol 7 , which was protected as a p-methoxybenzyl (PMB) ether. Oxidative cleavage of the alkene $\mathbf{8}$ followed by reduction gave alcohol 9 , which on acid treatment cyclized to give the acetal 10 along with a number of other products due to migration and removal of the PMB group. Acetylation then gave acetate 11, which showed a large nuclear Overhauser enhancement (NOE) between the C-3 and C-7, protons while molecular modelling revealed that the dihedral angle between $\mathrm{H}-1$ and $\mathrm{H}-7$ is $90^{\circ}\left({ }^{3} J_{1,7} 0 \mathrm{~Hz}\right)$ and this is in agreement with fact that $\mathrm{H}-1$ resonates as a singlet in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11. Therefore, the original rearrangement had proceeded mostly from the undesired α-face of the furanose ring.
The poor selectivity and low yields obtained in the above study caused us to examine the D-mannose-derived system, which provided far more promising results. As previously reported by this laboratory, ${ }^{6,19}$ the allyl ester $\mathbf{1 2}$ synthesized from diacetone-D-mannose, smoothly undergoes enolization, silylation and rearrangement to give the ester $\mathbf{1 3}$ as the major product in a 5.7:1 ratio (Scheme 4). Furthermore, the major ester $\mathbf{1 3}$ is crystalline and is easily obtained pure and in good yield by simple recrystallization of the crude product from light petroleum. At no time has any elimination product been detected and the reaction can be performed on a multigram scale without loss in yield or selectivity. Ester $\mathbf{1 3}$ was then converted into the model core $\mathbf{1 5}$ via the alcohol $\mathbf{1 4}$ by a sequence which addressed the inversion at C-7 and served to confirm the stereochemistry at C-5. ${ }^{6 c}$ Further confirmation of the C-5 stereochemistry resulted from X-ray analysis of the alcohol derived from the minor ester obtained in the rearrangement. ${ }^{19}$

Synthesis of the lactone fragment 24

The synthesis of the model lactone core precursor 24 was achieved as outlined in Scheme 5. Protection of the alcohol $\mathbf{1 4}$ gave the MOM ether $\mathbf{1 6}^{6 c}$ which was subjected to catalytic dihydroxylation and ketalization to give the ketal $\mathbf{1 7}$ as a $1: 1$ mixture of isomers at C-3. Attempts at stereoselective dihydroxylation using the asymmetric catalytic procedures pioneered by Sharpless ${ }^{21}$ gave only low selectivity for the desired isomer, however, it was eventually found that the C-3 stereo-

centre could be epimerized at a later stage (vide infra). The C-7 stereocentre was then inverted using our previously reported protocol. ${ }^{6 c}$ Debenzylation with lithium in ammonia and chlorination of the resulting lactols followed by reductive elimination ${ }^{22}$ gave the glycal 18. Benzylation provided the ether 19, which was epoxidized in a stereoselective manner from the face opposite the benzyloxy group by treatment with cold dimethyldioxirane. ${ }^{23}$ Subsequent ring opening of the labile epoxide 20 with neat allyl alcohol gave the acetal 21 and benzylation then afforded ether $\mathbf{2 2}$ in excellent yield. Removal of the allyl acetal by isomerization followed by oxymercuration according to the method described by Corey ${ }^{24}$ gave the lactol 23, which was

effectively converted into lactone $\mathbf{2 4}$ by agency of PCC in the presence of molecular sieves. The addition of simple nucleophiles such as MeLi to the lactone $\mathbf{2 4}$ was possible ${ }^{25}$ and this mode of reactivity is interesting to note in the light of the fact that Heathcock observed only β-elimination when a related lactone was treated with methyllithium or a Grignard reagent. ${ }^{6 i}$

Synthesis of the sidechain anion precursor 34

With the desired lactone in hand we then proceeded with the synthesis of the fully functionalized sidechain as depicted in Scheme $6 .{ }^{16}$ Monosilylation ${ }^{26}$ of butane-1,4-diol gave the tert-butyldimethylsilyl (TBDMS) ether 25, which was subjected to Swern oxidation followed by in situ methylenation ${ }^{27}$ to give the α, β-unsaturated aldehyde $\mathbf{2 6}$ in high yield after distillation. An Evans aldol reaction ${ }^{28}$ between the boron enolate derived from the oxazolidinone 27^{29} and aldehyde 26 gave the $\mathrm{C}-4^{\prime}-$ C-5' syn-isomer 28, which was transformed into the Weinreb amide 29.30 Monoaddition of phenylmagnesium chloride then provided adduct 30 in good yield. When the Grignard addition was conducted on a large scale we often observed a considerable amount of what appeared to be epimerization at C-5'. This problem was circumvented by slowly adding the excess Grignard reagent to the amide 29 at $-78^{\circ} \mathrm{C}$ followed by warming to RT, whereupon the reaction went to completion. Reduction of the ketone $\mathbf{3 0}$ followed by protection of the diol gave the acetonides 31 as a $3: 1$ mixture at $\mathrm{C}-6^{\prime}$. Originally we had proposed ${ }^{16}$ that the iodide derived from compound 31 could serve as an effective sidechain precursor; however, the reactivity of the derived anion was low and the acid lability of the acetonide was also problematic. Dissolving-metal reduction of the mixture of acetonides $\mathbf{3 1}$ according to the procedure described by Evans ${ }^{31}$ in his analogous sidechain synthesis gave the correctly functionalized sidechain precursor 32, which was converted into the alcohol 33 by benzylation followed by desilylation. Iodination ${ }^{32}$ of alcohol 33 then afforded the sidechain precursor 34.

Coupling of lactone 24 and the sidechain anion

After considerable experimentation, halogen-metal exchange ${ }^{33}$ of iodide 34 was effected with $\mathrm{Bu}^{t} \mathrm{Li}$ in freeze-thaw degassed $(\times 3) \mathrm{Et}_{2} \mathrm{O}$-hexane (3:2), and subsequent addition of a solution of the lactone 24 in degassed $\mathrm{Et}_{2} \mathrm{O}$-hexane followed by warming to $0^{\circ} \mathrm{C}$ gave lactols 35 (Scheme 7). Deprotection and ring closure by brief exposure to $10 \% \mathrm{aq} . \mathrm{HCl}$ in methanol yielded the bicycle 36 which consisted of an epimeric mixture at C-3 $(\sim 3: 1)$, demonstrating that the undesired acetonide isomer is somewhat reluctant to cyclize under these conditions. Twostep oxidation of the alcohol $\mathbf{3 6}$ to the acid by treatment with

Scheme 5
Dess-Martin reagent ${ }^{34}$ followed by $\mathrm{NaClO}_{2}{ }^{35}$ apparently induces C-3 epimerization and subsequent methylation gave the C4-decarboxydeoxy analogue ester 37 as the only detectable isomer. Thus, stereoselective formation of the C-3 centre by asymmetric dihydroxylation prior to ring closure was not required. The NOESY spectrum of product 37 showed a strong NOE interaction between the $\mathrm{H}-3$ (which resonates as a doublet of doublets at $\delta 4.89$) and H-6 thereby confirming the C-3 stereochemistry, while the ${ }^{13} \mathrm{C}$ NMR spectrum displayed a characteristic resonance at $\delta_{\mathrm{C}} 104.2$ for $\mathrm{C}-1$ of the 2,8 dioxabicyclo[3.2.1]octane ring system.

In conclusion, we have demonstrated that this convergent approach to the squalestatins/zaragozic acids is efficient and could lead to the production of the natural products themselves as well as analogues.
TBDMSCI

Scheme 6

Experimental

${ }^{1} \mathrm{H}$ NMR (300 MHz or 400 MHz) and proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra (75.5 MHz or 100 MHz) were recorded for deuteriochloroform solutions with residual chloroform as internal standard, using a Varian Unity 300 or UnityPlus 400 instrument. J-Values are given in Hz . Microanalyses were

$10 \% \mathrm{HCl} \left\lvert\, \begin{gathered}\mathrm{MeOH}, \mathrm{RT} \\ (67 \%)\end{gathered}\right.$

$\begin{array}{l}\text { 1. Dess-Martin } \\ \text { 2. } \mathrm{NaClO}_{2}, \mathrm{CH}_{2} \mathrm{~N}_{2}\end{array}$
$36 \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}-3$ epimer (ratio 3:1)
$37 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}(61 \%)$

Scheme 7
carried out at the University of Otago, Dunedin, New Zealand. Optical rotations were recorded in a 10 cm microcell using a JASCO DIP-1000 digital polarimeter; $[a]_{\mathrm{D}}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded using a Perkin-Elmer 1600 series FTIR spectrophotometer. Lowresolution mass spectra (electronic or chemical ionization) were recorded on a JEOL AX-505H mass spectrometer, and highresolution mass spectra (electrospray) were measured on a Bruker 4.7T BiOPEX FTMS spectrometer at Monash University, Clayton, Victoria. Flash chromatography was carried out on Merck silica gel 60. Analytical TLC was conducted on aluminium-backed 2 mm thick silica gel $60 \mathrm{GF}_{254}$ plates supplied by Merck, and chromatograms were visualized with solutions of veratraldehyde and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol, $20 \% \mathrm{w} / \mathrm{w}$ phosphomolybdic acid in ethanol or vanillin and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol. Anhydrous THF was distilled from benzophenone ketyl and potassium metal under nitrogen. All other anhydrous solvents were purified according to standard methods. All organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Light petroleum refers to the fraction with distillation range $60-80^{\circ} \mathrm{C}$.

Prop-2-enyl 3-O-benzyl-1,2-O-isopropylidene-a-d-xylofuran-

 uronate 4To a solution of acid $3^{20}(4.12 \mathrm{~g}, 14.0 \mathrm{mmol})$ in anhydrous THF $\left(40 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added oxalyl dichloride $\left(2.43 \mathrm{~cm}^{3}\right.$, 28.0 mmol) and one drop of DMF. After 2 h at RT, the solvent was removed, and the residue was then azeotroped with benzene $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. To a stirred solution of crude acid
chloride in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(80 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under were added DMAP ($1.62 \mathrm{~g}, 13.3 \mathrm{mmol}$) and allyl alcohol $\left(1.13 \mathrm{~cm}^{3}\right.$, $16.8 \mathrm{mmol})$. The solution was then stirred at RT for 2 h , water was added and the organic layer was separated. The aqueous layer was then extracted with diethyl ether and the organic layer was washed successively with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography of the residue on silica gel with 15% EtOAc-light petroleum as eluent afforded the allyl ester 4 as a pale yellow oil $(4.32 \mathrm{~g}$, 93%); $[a]_{\mathrm{D}}^{23}-186.9\left(c 1.00, \mathrm{CHCl}_{3}\right.$) (Found: C, 64.4; H, 6.5. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}$ requires C, 64.65; H, 6.7%); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2987$, 2937, $1769(\mathrm{CO})$ and $1455 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.47(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.28(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{OCH}), 4.50-4.74(5 \mathrm{H}, \mathrm{m}$, OCH), $4.85(1 \mathrm{H}, \mathrm{d}, ~ J ~ 3.6, ~ О С Н), ~ 5.18-5.34 ~(~ 2 H, ~ m, ~$ $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.86(1 \mathrm{H}, \mathrm{m}), 6.09\left(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{C} H=\mathrm{CH}_{2}\right)$ and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 26.3,26.9,65.9,72.3,79.6$, 81.7, 82.9, 105.7, 112.4, 119.0, 127.6, 127.9, 128.4, 131.5, 136.9 and 167.4; m/z (EI) $276\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{CO}, 8 \%\right), 129$ (12), 107 (10) and 91 (100).

Methyl 3-O-benzyl-1,2-O-isopropylidene-4-C-(prop-2-enyl)- α-Dxylofuranuronate 5 a and methyl 3 - O-benzyl-1,2-O-isopropyl-idene-4- C-(prop-2-enyl) $-\beta$-L-arabinofuranuronate $\mathbf{5 b}$
To a solution of $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}\left(0.92 \mathrm{~cm}^{3}, 6.6 \mathrm{mmol}\right)$ in anhydrous THF at $0^{\circ} \mathrm{C}$ was added $\mathrm{Bu}^{n} \mathrm{Li}\left(2.50 \mathrm{~cm}^{3}\right.$ of a 2.4 m solution in hexane, 6.0 mmol) dropwise under nitrogen. After 5 min the base solution was cooled to $-78^{\circ} \mathrm{C}$ and added dropwise via cannula to a solution of the allyl ester $\mathbf{4}(1.107 \mathrm{~g}, 3.31 \mathrm{mmol})$, TMSCl ($1.46 \mathrm{~cm}^{3}, 11.5 \mathrm{mmol}$) and HMPA ($2 \mathrm{~cm}^{3}$) in anhydrous THF $\left(5.2 \mathrm{~cm}^{3}\right)$ at $-100^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-100^{\circ} \mathrm{C}$ for $10 \mathrm{~min},-78^{\circ} \mathrm{C}$ for a further 10 min , then allowed to warm to RT over a period of 3 h , and then was cooled to $0^{\circ} \mathrm{C} .1 \mathrm{~m}$ aq. sodium hydroxide $\left(30 \mathrm{~cm}^{3}\right)$ was added, the solution was stirred for 20 min , and then was diluted with water and diethyl ether. The ether was discarded and more diethyl ether was added to the aqueous layer, which was then acidified to pH 2 with conc. HCl while being stirred. The organic layer was separated, and the aqueous layer was further extracted with diethyl ether. The combined organic layers were washed successively with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to afford the crude acids as a crystalline material. Treatment of the crude acids with an excess of diazomethane, and chromatography of the crude product on silica with 10% EtOAc-light petroleum as eluent afforded the minor methyl ester 5a, contaminated with a by-product, as a pale yellow oil, which was characterized as the derived alcohol (see below) ($210 \mathrm{mg}, 19 \%$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.54$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.76(2 \mathrm{H}, \mathrm{m}), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.01(1 \mathrm{H}, \mathrm{s}, 3-$ $\mathrm{H}), 4.53-4.69\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}, 2-\mathrm{H}\right), 5.07(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.16(1 \mathrm{H}, \mathrm{d}, J 4.2$, $1-\mathrm{H})$ and $7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. Further elution afforded the major methyl ester $\mathbf{5 b}$ as a pale yellow oil ($310 \mathrm{mg}, 28 \%$); $[a]_{\mathrm{D}}^{20}$ -74.3 (c 3.26, CHCl_{3}) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{3}, 333.1339 . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{6}$ requires, $m / z, 333.1338)$; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1736(\mathrm{CO}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.28(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.57(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $\left.8.1, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.71(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 6.6 , $\left.\mathrm{C} \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.52(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.58(1 \mathrm{H}, \mathrm{d}, J$ $3.6,2-\mathrm{H}), 4.67\left(2 \mathrm{H}, \mathrm{ABq}, J 11.4, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.04(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.94(1 \mathrm{H}, \mathrm{d}, J 3.6$, $1-\mathrm{H})$ and $7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 25.3,25.7,38.6$, $52.0,72.9,82.5,83.9,90.5,105.5,112.4,118.4,127.6,128.0$, $128.5,132.2,137.1$ and $172.0 ; \mathrm{m} / \mathrm{z}$ (EI) 348 ($\mathrm{M}^{+}, 0.4 \%$), 333 (2) and 91 (100).

$\boldsymbol{\beta}$-Elimination product 6

Resulting as a by-product from the above reaction: $[a]_{\mathrm{D}}^{20}-21.5$ (c 1.98, CHCl_{3}) (Found: $\mathrm{M}^{+}+\mathrm{H}, 201.0760 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{5}$ requires $m / z, 201.0763) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2993,2956,1744$ (CO), 1632 and $1440 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.45(6 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.37(1 \mathrm{H}$, dd, $J 5.4$ and $2.4, \mathrm{OC} H \mathrm{CH}=\mathrm{C}), 6.09(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{CHC} H=\mathrm{C})$,
$6.17(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OCHO}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 27.7,27.9,52.5,82.7$, 106.7, 110.5, 113.1, 149.9 and $160.0 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 201\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 6%), 171 (47) and 83 (100).

3-O-Benzyl-5,6,7-trideoxy-4-C-(hydroxymethyl)-1,2-O-isopropylidene- β-d-xylo-hept- 6 -enofuranose 7

To a stirred suspension of $\mathrm{LiAlH}_{4}(73 \mathrm{mg}, 1.90 \mathrm{mmol})$ in diethyl ether $\left(3.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of the major methyl ester $\mathbf{5 b}$ ($334 \mathrm{mg}, 1.04 \mathrm{mmol}$) in diethyl ether (8 cm^{3}) dropwise. The mixture was stirred at RT for 40 min , cooled to $0^{\circ} \mathrm{C}$, and treated with water $\left(1.5 \mathrm{~cm}^{3}\right)$ followed by 5 m $\mathrm{NaOH}\left(1.5 \mathrm{~cm}^{3}\right)$. Diethyl ether and MgSO_{4} were added and the mixture was filtered. Purification of the crude product on silica with $20 \% \mathrm{EtOAc}$-light petroleum as eluent afforded the alcohol 7 as a clear oil ($281 \mathrm{mg}, 91 \%$); $[\alpha]_{\mathrm{D}}^{20}-20.9\left(c 3.65, \mathrm{CHCl}_{3}\right)$ (Found: C, 67.4; H, 7.7. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$ requires C, 67.5; H, 7.55\%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3504(\mathrm{OH}), 2983,2938,1455$ and 1374; $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.57(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.08(1 \mathrm{H}, \mathrm{t}, J 6.6$, $\mathrm{OH}), 2.38\left(1 \mathrm{H}, \mathrm{dd}, J 13.8\right.$ and $\left.8.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.50(1 \mathrm{H}$, dd, $J 13.8$ and $\left.6.6, \mathrm{CH}_{2} \mathrm{CCH}=\mathrm{CH}_{2}\right), 3.61\left(2 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{C} \mathrm{H}_{2} \mathrm{OH}\right)$, $4.01(1 \mathrm{H}, \mathrm{d}, J 1.8,3-\mathrm{H}), 4.52-4.76\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}, 2-\mathrm{H}\right), 5.12$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 5.90(1 \mathrm{H}, \mathrm{d}$, $J 4.5,1-\mathrm{H})$ and $7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 26.6,27.1$, 36.7, 64.0, 72.2, 84.0, 85.5, 90.1, 104.3, 112.6, 118.6, 127.4, 127.8, 128.4, 133.6 and 137.4; m / z (EI) 289 (2\%), 220 (2) and 91 (100).

3-O-Benzyl-5,6,7-trideoxy-4-C-(hydroxymethyl)-1,2-O-isopropylidene- α-L-arabino-hept-6-enofuranose

The minor methyl ester was converted to the title alcohol by using a method identical with that described above; $[a]_{D}^{20}-43.7$ (c 1.51, CHCl_{3}) (Found: C, $67.5 ; \mathrm{H}, 7.55 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3494(\mathrm{OH}), 2985,2936,1455$ and 1382; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.37$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.53(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.21(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and 5.1 , $\mathrm{OH}), 2.39\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.54(1 \mathrm{H}$, dd, $J 12.0$ and $\left.9.0, \mathrm{CH}_{2} \mathrm{OH}\right), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J 12.0\right.$ and $\left.5.1, \mathrm{CH}_{2} \mathrm{OH}\right), 3.99$ ($1 \mathrm{H}, \mathrm{d}, J 2.4,3-\mathrm{H}$), $4.50-4.79\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}, 2-\mathrm{H}\right), 5.02$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.03(1 \mathrm{H}$, $\mathrm{d}, J 4.2,1-\mathrm{H})$ and $7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(75.5 \mathrm{MHz}) 27.3$, $27.6,66.2,72.5,86.6,87.2,88.6,104.8,113.5,118.7,127.9$, 128.2, 128.6, 132.9 and 136.9; m/z (EI) 289 (2\%), 91 (100) and 83 (5).

3-O-Benzyl-5,6,7-trideoxy-1,2-O-isopropylidene-4-C-(4-methoxybenzyl)- β-D-xylo-hept- 6 -enofuranose 8

To a suspension of sodium hydride ($33 \mathrm{mg}, 0.825 \mathrm{mmol} ; 60 \%$ dispersion in mineral oil, washed with anhydrous pentane) in DMF ($2 \mathrm{~cm}^{3}$) was added a solution of alcohol $7(221 \mathrm{mg}, 0.690$ $\mathrm{mmol})$ in anhydrous THF $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ dropwise under nitrogen. The solution was stirred for 40 min at RT, and 4-methoxybenzyl chloride ($0.110 \mathrm{~cm}^{3}, 0.81 \mathrm{mmol}$) was added. After stirring of the mixture at RT for 3 h , water and diethyl ether were added, the organic layer was separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed successively with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Purification of the crude product by flash chromatography on silica with $5 \% \mathrm{EtOAc}-$ light petroleum as eluent afforded the PMB ether $\mathbf{8}$ as a pale yellow oil ($252 \mathrm{mg}, 83 \%$); $[a]_{\mathrm{D}}^{20}-12.8\left(c 1.15, \mathrm{CHCl}_{3}\right)$ (Found: C, $70.9 ; \mathrm{H}, 7.5 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{6}$ requires C, $\left.70.9 ; \mathrm{H}, 7.3 \%\right)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz})$ $1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.47(1 \mathrm{H}, \mathrm{dd}, J 14.1$ and 8.1 , $\left.\mathrm{C} \mathrm{H}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.47\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.6.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $3.48\left(2 \mathrm{H}, \mathrm{ABq}, J 9.6, \mathrm{CH}_{2} \mathrm{OPMB}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.12(1 \mathrm{H}$, d, $J 1.5,1-\mathrm{H}), 4.44(2 \mathrm{H}, \mathrm{s}), 4.53-4.71\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}, 2-\mathrm{H}\right)$, $5.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHC}=\mathrm{CH}_{2}\right), 5.88$ $(1 \mathrm{H}, \mathrm{d}, J 4.8,1-\mathrm{H}), 6.83-7.21\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{ArH}\right)$ and 7.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 26.5,26.9,36.5,55.2,71.2,72.2$, $72.9,84.7,85.8,88.8,104.4,112.5,113.6,118.2,127.4,127.6$, $128.3,129.1,130.4,133.8,137.7$ and $159.0 ; \mathrm{m} / \mathrm{z}$ (EI) $440\left(\mathrm{M}^{+}\right.$, 1%), 137 (14), 91 (100) and 83 (100).

3-O-Benzyl-5-deoxy-1,2-O-isopropylidene-4-C-(4-methoxy-

 benzyl)- β-d-xylo-hexofuranose 9To a solution of the PMB ether $\mathbf{8}(201 \mathrm{mg}, 0.456 \mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ were added aq. NMO ($92 \mathrm{mg}, 0.79 \mathrm{mmol}$ in $1 \mathrm{~cm}^{3}$) and osmium tetraoxide (0.2 m in tert-butyl alcohol; $0.057 \mathrm{~cm}^{3}, 2.5$ $\mathrm{mol} \%$). After stirring of the mixture overnight at RT, aq. sodium metaperiodate ($205 \mathrm{mg}, 0.97 \mathrm{mmol}$ in $4 \mathrm{~cm}^{3}$) was added, and the mixture was stirred for a further 2 h . Water was added, and the mixture was extracted with diethyl ether. The solvent was removed, and the crude aldehyde was dissolved in ethanol $\left(4 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{NaBH}_{4}(42 \mathrm{mg}, 1.11 \mathrm{mmol})$. After stirring of the mixture for 40 min at RT , the solvent was removed, and water and diethyl ether were added. The aqueous layer was acidified with $10 \% \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$, and the mixture was filtered through Celite. The organic layer was separated, washed successively with saturated aq. NaHCO_{3}, water and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure and purification of the residue on silica with 10% EtOAc-light petroleum as eluent afforded the alcohol 9 ($202 \mathrm{mg}, 100 \%$) as a pale yellow oil; $[a]_{\mathrm{D}}^{20}-34.4$ (Found: $\mathrm{C}, 67.8 ; \mathrm{H}, 7.3 . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{7}$ requires C, $67.55 ; \mathrm{H}, 7.3 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3456$ (OH), 2937, 1613, 1586,1513 and $1455 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.43(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 1.92-2.16(2 \mathrm{H}, \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.57(2 \mathrm{H}, \mathrm{ABq}$, J 9.6, $\left.\mathrm{CH}_{2} \mathrm{OPMB}\right), 3.74\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.06(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.46\left(2 \mathrm{H}, \mathrm{ABq}, J 11.7, \mathrm{OCH}_{2} \mathrm{PMB}\right)$, $4.52-4.71\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}, 2-\mathrm{H}\right), 5.90(1 \mathrm{H}, \mathrm{d}, J 4.2,1-\mathrm{H})$, 6.84-7.20 ($4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{ArH}$) and $7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5$ MHz), 26.1, 26.6, 34.5, 55.2, 58.7, 71.7, 72.3, 73.1, 84.9, 85.2, 89.6, 112.3, 113.8, 127.5, 127.8, 128.4, 129.3, 129.8, 137.3 and 159.3; m/z (EI) 386 (M ${ }^{+}-\mathrm{Me}_{2} \mathrm{CO}, 2 \%$), 137 (9), 121 (11) 91 (21) and 83 (100).

7-Acetoxy-6-benzyloxy-5-(4-methoxybenzyl)-2,8-

 dioxabicyclo[3.2.1]octane 11To a solution of the alcohol $9(89.2 \mathrm{mg}, 0.201 \mathrm{mmol})$ in CHCl_{3} $\left(2 \mathrm{~cm}^{3}\right)$ was added a crystal of CSA. The solution was heated under reflux for 24 h , water was added, and the mixture was extracted twice with diethyl ether. The combined organic extracts were washed successively with saturated aq. NaHCO_{3}, water and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent under reduced pressure afforded a mixture of compounds as a pale yellow oil. The crude alcohols were dissolved in a mixture of pyridine $\left(1 \mathrm{~cm}^{3}\right)$ and acetic anhydride $\left(1 \mathrm{~cm}^{3}\right)$ and the solution was stirred overnight at RT. Water and diethyl ether were added, and the organic layer was washed successively with 10% aq. HCl , saturated aq. NaHCO_{3}, water, and brine. Drying of the organic fraction $\left(\mathrm{MgSO}_{4}\right)$ followed by concentration under reduced pressure and purification by preparative TLC using 20% EtOAc-light petroleum as eluent afforded the bicyclic compound 11 as a pale yellow oil ($18.3 \mathrm{mg}, 21 \%$); $\delta_{\mathrm{H}}(300 \mathrm{MHz})$ $1.60\left(1 \mathrm{H}\right.$, dd, $J 15.0$ and $\left.3.9,4-\mathrm{H}^{\mathrm{eq}}\right), 2.04\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}^{\mathrm{ax}}\right), 2.10$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$), 3.35-3.54 ($2 \mathrm{H}, \mathrm{ABq}, J 10.8, \mathrm{CH}_{2} \mathrm{OPMB}$), $3.79(3 \mathrm{H}$, s, OMe), $3.96\left(1 \mathrm{H}, \mathrm{dd}, J 11.7\right.$ and $\left.6.6,3-\mathrm{H}^{\mathrm{eq}}\right), 4.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $6-\mathrm{H}), 4.17\left(1 \mathrm{H}, \mathrm{dt}, J 11.7\right.$ and $\left.3.9,3-\mathrm{H}^{\mathrm{ax}}\right), 4.44-4.70(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 5.11(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.35(1 \mathrm{H}, \mathrm{d}, J 2.4,7-\mathrm{H}), 6.85-7.25$ $\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{ArH}\right)$ and $7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
(+)-Benzyl 5,6,7-trideoxy-2,3- O-isopropylidene-4-C-(methoxymethoxymethyl)- β-L-ribo-hept-6-enofuranoside 16 To a stirred solution of the alcohol $\mathbf{1 4}^{19}(2.55 \mathrm{~g}, 7.98 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ under nitrogen was added $\operatorname{Pr}_{2}{ }_{2} \mathrm{NEt}(2.66$ $\left.\mathrm{cm}^{3}, 15.3 \mathrm{mmol}\right)$. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and MOMCl $\left(0.877 \mathrm{~cm}^{3}, 11.5 \mathrm{mmol}\right)$ was added dropwise. After being stirred overnight, the reaction mixture was diluted successively with 10% aq. HCl and water and extracted with diethyl ether. The organic layer was washed successively with 10% aq. HCl and saturated aq. NaHCO_{3}. Purification of the crude product by flash chromatography with 10% EtOAc-light petroleum as eluent afforded the ether $\mathbf{1 6}(2.74 \mathrm{~g}, 99 \%)$ as a pale yellow oil; $[a]_{\mathrm{D}}^{20}+44.7\left(c 1.75, \mathrm{CHCl}_{3}\right)$ (Found: C, 66.0; H, 7.9.
$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $\left.\mathrm{C}, 65.9 ; \mathrm{H}, 7.7 \%\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.31(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.51(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 8.4 , $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.65\left(1 \mathrm{H}\right.$, dd, $J 14.0$ and $\left.6.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.61$ and $3.74\left(2 \mathrm{H}, \mathrm{ABq}, J 9.9, \mathrm{CH}_{2} \mathrm{O}-\right.$ MOM), $4.47\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{OCH}_{2} \mathrm{Ph}\right) 4.58(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{OCH})$, $4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.78(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{OCH}), 4.79$ $\left(1 \mathrm{H}, \mathrm{d}, J 12.3, \mathrm{CH}_{2} \mathrm{OBn}\right), 5.11-5.16\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ and $\left.1-\mathrm{H}\right)$ 5.68-5.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C} H=\mathrm{CH}_{2}$) and $7.28-7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 24.7,26.0,40.0,55.3,67.4,69.6,83.7,86.3,88.5$, $96.9,107.4,112.5,118.5,127.7,127.8,128.4,133.4$ and 137.4; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 365\left(\mathrm{M}^{+}+\mathrm{H}, 7 \%\right), 232(48), 303$ (55) and 185 (100).

Benzyl 5-deoxy-2,3:6,7-di- O-isopropylidene-4-C-

 (methoxymethoxymethyl)- α-L-allo/ β-d-talo-heptofuranoside 17 To an aq. solution of the MOM ether $16(1.59 \mathrm{~g}, 4.36 \mathrm{mmol}$ in $\left.22 \mathrm{~cm}^{3}\right)$ and $\mathrm{Bu}^{t} \mathrm{OH}\left(22 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.83$ $\mathrm{g}, 13.2 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{FeCN}_{6}(3.96 \mathrm{~g}, 12.0 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(0.219$ $\mathrm{cm}^{3} ; 2 \mathrm{~mol} \%$ solution in $\left.\mathrm{Bu}^{t} \mathrm{OH}\right)$. The resulting orange suspension was allowed to warm to RT and was stirred for 12 h . Sodium sulfite was added until the suspension turned brown, and the mixture was stirred for a further 1 h and then was diluted with diethyl ether and water. The organic layer was washed successively with water and brine, dried, and concentrated to provide the crude diol as a $1: 1$ mixture of diastereoisomers ($1.73 \mathrm{~g}, 100 \%$). To a solution of the $\operatorname{diol}(1.24 \mathrm{~g}, 3.12$ mmol) in acetone ($20 \mathrm{~cm}^{3}$) and 2,2-dimethoxypropane ($9 \mathrm{~cm}^{3}$ was added PPTS ($69 \mathrm{mg}, 0.275 \mathrm{mmol}$) and the reaction mixture was stirred for 16 h at RT. Most of the solvent was removed under reduced pressure and the residue was dissolved in diethyl ether and washed successively with water and brine. Purification of the crude product by flash chromatography using 10% EtOAc-light petroleum as eluent provided the acetonide $\mathbf{1 7}$ ($1.32 \mathrm{~g}, 96 \%$) as a $1: 1$ mixture of diastereoisomers (Found: C, 63.0; $\mathrm{H}, 8.1 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{8}$ requires C, $63.0 ; \mathrm{H}, 7.8 \%$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$) $1.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.35(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.47(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me})$, 1.88-2.24 (m, 4H, $2 \times \mathrm{CH}_{2}$), $3.395(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.398(3 \mathrm{H}, \mathrm{s}$, OMe), 3.42-3.58 ($2 \mathrm{H}, \mathrm{m}$), 3.71-3.86 ($2 \mathrm{H}, \mathrm{m}$), 3.91-3.96 (1 H , $\mathrm{m}), 4.06-4.16(1 \mathrm{H}, \mathrm{m}), 4.25-4.42(2 \mathrm{H}, \mathrm{m}), 4.44-4.85(14 \mathrm{H}, \mathrm{m})$, $5.14(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$ and $7.26-7.36(10 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 14.2,24.8,24.9,25.7,25.9,26.2,26.9,38.8$, 39.2, 55.3, 55.5, 60.4, 67.8, 68.2, 69.7, 69.8, 70.0, 70.4, 72.3, $72.4,84.4,86.4,87.5,88.2,96.9,107.6,107.8,108.2,109.0$, $112.5,112.7,127.6,127.7,127.8,128.0,128.3,128.4$ and 137.4 .
4,7-Anhydro-3,6-dideoxy-1,2-O-(isopropylidene)-4-C-(methoxymethoxymethyl)-D-arabinold-ribo-hept-6-enitol 18

To a blue solution of Li metal ($158 \mathrm{mg}, 22.8 \mathrm{mmol}$) in liquid $\mathrm{NH}_{3}\left(\sim 25 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added a solution of the acetonide 17 ($500 \mathrm{mg}, 1.14 \mathrm{mmol}$) in THF ($12 \mathrm{~cm}^{3}$). The reaction mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$, then was treated with $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue colour had dissipated. The resulting white suspension was diluted with diethyl ether ($20 \mathrm{~cm}^{3}$) and MgSO_{4} was added. After being stirred for 2 h at RT the reaction mixture was filtered and concentrated to give the crude lactols as an oil. The lactols were dissolved in THF ($10 \mathrm{~cm}^{3}$) and treated with $\mathrm{CCl}_{4}\left(0.283 \mathrm{~cm}^{3}, 2.93 \mathrm{mmol}\right)$ and HMPT $\left(0.620 \mathrm{~cm}^{3}, 3.41\right.$ $\mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The resulting yellow suspension was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then was allowed to warm to RT over a period of 1.5 h . The reaction mixture was diluted with diethyl ether and saturated aq. NaHCO_{3}, and the organic layer was washed successively with water and brine. Removal of the solvent furnished the chlorides as an orange oil. The chlorides, in THF, were subjected to $\mathrm{Li} / \mathrm{NH}_{3}$ reduction as described above. Purification by flash chromatography using 20-40\% EtOAclight petroleum as gradient eluent gave the glycal $\mathbf{1 8}(212 \mathrm{mg}$, 68%) as an oily mixture of diasteroisomers (Found: C, 56.6 ; H, 8.0. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{6}$ requires C, $\left.56.9 ; \mathrm{H}, 8.0 \%\right)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3442$ (OH), 2982, 2931, 1611, 1377, 1243, 1152, 1046 and $835 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.36$
$(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.74-2.05\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.72-2.76(2 \mathrm{H}, \mathrm{br} \mathrm{m}$, OH), $3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.44(1 \mathrm{H}, \mathrm{t}, J 8.1$, $2-\mathrm{H}), 3.50(1 \mathrm{H}, \mathrm{t}, J 7.8,2-\mathrm{H}), 3.73$ and $3.84(2 \mathrm{H}, \mathrm{ABq}, J 10.5$, C $\mathrm{H}_{2} \mathrm{OMOM}$), $3.89(1 \mathrm{H}, \mathrm{s}), 3.99-4.17(4 \mathrm{H}, \mathrm{m}), 4.22-4.33(2 \mathrm{H}$, $\mathrm{m}), 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 4.86(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.0, \mathrm{CHOH}), 5.08-5.13(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}=\mathrm{CHO}), 6.47(1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{C}=\mathrm{CHO})$ and $6.51(1 \mathrm{H}, \mathrm{d}, J$ 2.7, $\mathrm{C}=\mathrm{CHO}$); $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}$ 14.1, 25.7, 25.8, 26.8, 38.2, 39.6 , $55.57,55.61,60.3,67.2,69.3,70.1,70.2,71.4,72.1,78.8,80.0$, 87.8, 97.0, 97.1, 103.4, 104.2, 108.5, 108.6, 148.4 and 148.7.

4,7-Anhydro-5-O-benzyl-3,6-dideoxy-1,2-O-isopropylidene-4-C-(methoxymethoxymethyl)-d-arabinold-ribo-hept-6-enitol 19
To a suspension of $\mathrm{NaH}(230 \mathrm{mg}, 5.75 \mathrm{mmol} ; 60 \%$ dispersion in oil, hexane washed) in THF $\left(12 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added a solution of glycal $18(650 \mathrm{mg}, 2.37 \mathrm{mmol})$ in DMF $\left(12 \mathrm{~cm}^{3}\right)$. After stirring of the mixture for 45 min at $0^{\circ} \mathrm{C}, \mathrm{BnBr}\left(0.395 \mathrm{~cm}^{3}, 3.32\right.$ mmol) was added and the reaction mixture was stirred for 12 h at RT. Water was added cautiously and the crude product was extracted with diethyl ether. Purification by flash chromatography with 20% EtOAc-light petroleum as eluent provided the benzyl ether 19 ($790 \mathrm{mg}, 92 \%$) as an oily mixture of diastereoisomers (Found: C, 65.7; H, 7.7. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$ requires C, 65.9; $\mathrm{H}, 7.7 \%) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}), 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.35$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.93-2.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 3.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.46 ($1 \mathrm{H}, \mathrm{t}, J 7.5,2-\mathrm{H}$), 3.53 $(1 \mathrm{H}, \mathrm{t}, J 7.8,2-\mathrm{H}), 3.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.85$ and $3.95(2 \mathrm{H}, \mathrm{ABq}$, $J 9.3, \mathrm{CH}_{2} \mathrm{OMOM}$), $3.84-4.17\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.27-4.35$ $(1 \mathrm{H}, \mathrm{m}), 4.48-4.59(4 \mathrm{H}, \mathrm{m}), 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.69$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.73(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{OCH}), 5.11(1 \mathrm{H}, \mathrm{t}$, $J 3.0, \mathrm{CH}=\mathrm{CHO}), 5.16(1 \mathrm{H}, \mathrm{t}, J 3.0, \mathrm{C} H=\mathrm{CHO}), 6.49(1 \mathrm{H}, \mathrm{d}, J$ $3.0, \mathrm{CH}=\mathrm{CHO}), 6.51(1 \mathrm{H}, \mathrm{d}, J 3.0, \mathrm{CH}=\mathrm{CHO})$ and $7.26-7.38$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}$) 25.7, 25.9, 26.8, 37.2, 39.1, 55.4 , $55.5,66.4,68.1,70.3,71.45,71.50,71.8,72.5,84.7,85.0,87.9$, 88.2, 96.9, 97.0, 100.8, 101.2, 108.4, 108.6, 127.45, 127.49, 127.6, 128.28, 128.32, 138.3, 138.4, 148.7 and 148.9.

Prop-2-enyl 2,3-di- O-benzyl-5-deoxy-6,7-O-isopropylidene-4-C-(methoxymethoxymethyl)- β-L-altro/ α-D-galacto-heptofuranoside 22
To a solution of benzyl ether 19 ($240 \mathrm{mg}, 0.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(12 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of dimethyldioxirane in acetone ($6.35 \mathrm{~cm}^{3} ; 0.104 \mathrm{~m}$). After 45 min the solvents were removed under reduced pressure in the absence of water $(5 \mathrm{mmHg})$ and the flask was charged with dry allyl alcohol $\left(3 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at RT for 2 h and the solvent was removed under reduced pressure to afford acetal 21 ($275 \mathrm{mg}, 95 \%$). A solution of this acetal ($275 \mathrm{mg}, 0.64 \mathrm{mmol}$) in DMF ($4 \mathrm{~cm}^{3}$) was added to a suspension of $\mathrm{NaH}(78 \mathrm{mg}, 1.95$ $\mathrm{mmol} ; 60 \%$ dispersion in oil, hexane washed) in THF ($4 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. After $45 \mathrm{~min}, \operatorname{BnBr}\left(0.155 \mathrm{~cm}^{3}, 1.30 \mathrm{mmol}\right)$ was added and the reaction mixture was stirred overnight at RT. The reaction was quenched with water and the aqueous layer was extracted with diethyl ether. The organic layer was washed successively with water and brine and concentrated. Purification of the crude product by flash chromatography using 5-20\% EtOAclight petroleum as gradient eluent afforded the allyl acetal 22 ($300 \mathrm{mg}, 90 \%$) as an oily mixture of diastereoisomers (Found: C, 68.4; H, 7.5. $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{8}$ requires $\left.\mathrm{C}, 68.2 ; \mathrm{H}, 7.6 \%\right) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.37$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.94-2.17\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 3.340(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.345(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.47$ and $3.53\left(2 \mathrm{H}, \mathrm{ABq}, J 7.8, \mathrm{OCH}_{2}\right), 3.64$ ($2 \mathrm{H}, \mathrm{d}, J 10.5,2 \times \mathrm{CH}_{2} \mathrm{OMOM}$), $3.72-3.83(2 \mathrm{H}, \mathrm{m}), 3.94(1 \mathrm{H}$, br d, $J 6.0, \mathrm{OCH}), 3.98(1 \mathrm{H}$, br d, $J 6.0, \mathrm{OCH}), 4.01-4.18(5 \mathrm{H}$, $\mathrm{m}), 4.20-4.31(4 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{d}, J 6.0), 4.47-4.66(12 \mathrm{H}, \mathrm{m})$, $5.02(1 \mathrm{H}, \mathrm{d}, J 2.4), 5.18(1 \mathrm{H}, \mathrm{d}, J 9.0), 5.26(2 \mathrm{H}, \mathrm{t}, J 1.0$, $\left.2 \times \mathrm{CH}=\mathrm{CH}_{2}\right), 5.32\left(2 \mathrm{H}, \mathrm{t}, J 1.0,2 \times \mathrm{CH}=\mathrm{CH}_{2}\right), 5.83-5.97(2 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{OCH}=\mathrm{CH}_{2}\right)$ and $7.22-7.39(20 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5$ $\mathrm{MHz})$ 14.1, 21.0, 25.9, 26.9, 38.1, 40.3, 55.2, 55.4, 60.3, 68.3, $68.5,69.2,70.3,70.4,70.8,71.9,72.0,72.2,72.6,72.7,84.3$,
85.3, 85.5, 87.3, 88.6, 88.8, 97.0, 105.2, 105.3, 108.3, 108.4, 117.0, 127.58, 127.60, 127.64, 127.78, 127.83, 128.3, 128.4, 134.1 and 138.1.

2,3-Di- O-benzyl-5-deoxy-6,7-O-isopropylidene-4-C-(methoxy-methoxymethyl)-L-altrold-galacto-heptono-1,4-lactone 24

A solution of the allyl acetal $22(360 \mathrm{mg}, 0.681 \mathrm{mmol})$, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(32 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(16.3 \mathrm{mg}, 0.145$ $\mathrm{mmol})$ in $\operatorname{EtOH}\left(9 \mathrm{~cm}^{3}\right)$ was heated to reflux for 2 h . The solvent was removed in vacuo and the resulting brown oil was filtered through a plug of silica gel with 20% EtOAc-light petroleum as eluent to afford a yellow oil. The crude enol ether was dissolved in a mixture of THF $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(4 \mathrm{~cm}^{3}\right)$ and treated with aq. $\mathrm{Hg}(\mathrm{OAc})_{2}\left(273 \mathrm{mg}, 0.857 \mathrm{mmol}\right.$ in $\left.3 \mathrm{~cm}^{3}\right)$. After stirring of the mixture for 30 min , THF was removed in vacuo and the residue was taken up in diethyl ether-water. The organic layer was washed successively with saturated aq. NaHCO_{3} and brine, dried and concentrated to give the crude lactol 23 (332 $\mathrm{mg}, 100 \%$). To a solution of the lactol $23(107 \mathrm{mg}, 0.219 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ were added $\mathrm{NaOAc}(179 \mathrm{mg}, 2.18 \mathrm{mmol})$, powdered $4 \AA$ molecular sieves (35.6 mg) and PCC (71 mg , 0.329 mmol). The resulting brown suspension was stirred for 30 min at RT, then was filtered through Florisil and the filter cake was washed with EtOAc. The crude product was purified by flash chromatography using 10-20\% EtOAc-light petroleum as gradient eluent to afford the lactone $\mathbf{2 4}(81 \mathrm{mg}, 76 \%)$ as an oily mixture of diastereoisomers (Found: C, 66.6; H, 7.2. $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{8}$ requires C, 66.7; H, 7.0\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2980,2931,1782$ (CO), 1733 (CO), 1451 and 1046; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.29$ (3H, s, Me), $1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.36(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 1.79(1 \mathrm{H}, \mathrm{t}, J 4.2,5-\mathrm{H})$, $1.83(1 \mathrm{H}, \mathrm{t}, J 4.2,5-\mathrm{H}), 1.92-2.06(2 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H}), 3.25(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.26(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.33-3.49(4 \mathrm{H}, \mathrm{m}), 3.71$ and 3.88 ($2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CH}_{2} \mathrm{OMOM}$), $3.93(2 \mathrm{H}, \mathrm{d}, J 10.0,2 \times \mathrm{OCH}$), $4.00-4.29(6 \mathrm{H}, \mathrm{m}), 4.51-4.76(10 \mathrm{H}, \mathrm{m}), 5.11(1 \mathrm{H}, \mathrm{d}, J 9.6$, $\mathrm{OCH}), 5.15(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{OCH})$ and $7.21-7.42(20 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}), 25.7,25.8,26.8,38.2,40.5,55.5,67.5,69.0,69.8$, $69.9,70.7,71.4,72.6,72.8,73.0,78.9,82.5,83.3,83.8,85.2,96.3$, $96.4,109.3,109.4,127.6,127.7,127.9,128.04,128.07,128.35$, $128.39,128.44,128.5,137.1,137.2,137.3,137.5$ and 173.0.

2-[2-(tert-Butyldimethylsiloxy)ethyl]propenal 26

To a stirred solution of oxalyl dichloride ($14.7 \mathrm{~cm}^{3}, 169 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(250 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$ was added dropwise DMSO $\left(16.3 \mathrm{~cm}^{3}, 230 \mathrm{mmol}\right)$ with the evolution of gas. After $15 \mathrm{~min}, \mathrm{a}$ solution of 4-(tert-butyldimethylsiloxy)butan-1-ol 25 (11.4 g , 56.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise via cannula to the solution with the formation of a precipitate. Triethylamine ($118 \mathrm{~cm}^{3}, 847 \mathrm{mmol}$) was then added and the reaction mixture was allowed to warm to RT and was stirred for a further $15 \mathrm{~min} . N, N$-Dimethyl(methylene)ammonium iodide (24.0 $\mathrm{g}, 130 \mathrm{mmol}$) was added to the mixture and the resulting orange suspension was stirred overnight at RT. The reaction mixture was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was washed successively with 5% aq. NaHCO_{3} and brine, and dried. Removal of the solvent gave an orange oil, which was purified by flash filtration through silica gel, using 5\% EtOAc-light petroleum as eluent followed by distillation at reduced pressure $\left(95-97^{\circ} \mathrm{C}\right.$ at 0.4 mmHg$)$ to give the aldehyde $26(8.2 \mathrm{~g}, 68 \%)$ as an oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2956$, 2929, 2857, 2360, $1693(\mathrm{CO}), 1256,1102$ and $835 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.47(2 \mathrm{H}, \mathrm{t}, J 5.5$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 3.69\left(2 \mathrm{H}, \mathrm{t}, J 6.3, \mathrm{CH}_{2} \mathrm{OTBS}\right), 6.05(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 6.36\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $9.52(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz})-5.4,18.2,25.8,25.9,31.4,61.0,135.9,147.1$ and 194.5. The aldehyde was characterized as the semicarbazone derivative: mp 167-168 ${ }^{\circ} \mathrm{C}$ (Found: C, 53.0; H, 9.3; N, 15.1. $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$ requires C, $53.1 ; \mathrm{H}, 9.3 ; \mathrm{N}, 15.5 \%)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.04(6 \mathrm{H}, \mathrm{s}$, SiMe_{2}), $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 2.57\left(2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.76$ $\left(2 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CH}_{2} \mathrm{OTBS}\right), 5.34\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.46(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 7.38(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{NH})$ and $8.90(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(75.5$ $\mathrm{MHz})-5.2,18.3,25.9,34.3,61.9,123.0,141.2,144.3$ and 157.2 .
(+)-[4S(2'S,3'S)]-4-Benzyl-3-\{4'-[2-(tert-butyldimethyl-siloxy)ethyl]-3'-hydroxy-2'-methylpent-4'-enoyl\}oxazolidin-2one 28
To a solution of the oxazolidinone $27^{29}(1.80 \mathrm{mg}, 7.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(26 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ were added dropwise freshly distilled dibutylboryl triflate $\left(2.24 \mathrm{~cm}^{3}, 8.91 \mathrm{mmol}\right)$ and diisopropylethylamine ($1.69 \mathrm{~cm}^{3}, 9.70 \mathrm{mmol}$) at a rate such that the internal temperature remained below $3^{\circ} \mathrm{C}$. The nearly colourless solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $26(2.46 \mathrm{~g}, 12.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ was added dropwise at $-78^{\circ} \mathrm{C}$ via cannula to the reaction mixture, which was stirred for 30 min . The mixture was then allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred for a further 1 h before being quenched by the addition of pH 7 phosphate buffer $\left(11 \mathrm{~cm}^{3}\right)$, methanol ($38 \mathrm{~cm}^{3}$) and $2: 1$ methanol- 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ (38 cm^{3}). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and extracted with diethyl ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic layers were washed successively with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and saturated aq. NaHCO_{3}, dried, concentrated, and purified by flash chromatography using 20\% EtOAc-light petroleum as eluent to yield oxazolidinone $28(2.42 \mathrm{~g}, 70 \%)$ as a viscous oil; $[a]_{\mathrm{D}}^{20}$ +114.6 (c 0.048, CHCl_{3}) (Found: C, 64.5; H, 8.1; N, 3.45. $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}$ requires C, 64.4; H, 8.3; N, 3.1\%); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3515(\mathrm{OH}), 2927,2854,1779(\mathrm{CO}), 1700(\mathrm{CO}), 1383$, 1209 and $836 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.88(9 \mathrm{H}, \mathrm{s}$, SiCMe_{3}), $1.28(3 \mathrm{H}, \mathrm{d}, J 6.9$, Me), 2.16-2.28 ($1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.32-2.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.74(1 \mathrm{H}, \mathrm{d}, J$ $\left.9.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.79\left(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.91-3.01(1 \mathrm{H}, \mathrm{m})$, $3.28(1 \mathrm{H}, \mathrm{dt}, J 12.9,3.3, \mathrm{CHOH}), 3.72-3.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OT}-\right.$ BS), $3.97-4.06(1 \mathrm{H}, \mathrm{m}), 4.17(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{OCH}), 4.41(1 \mathrm{H}$, d, $\left.J 5.7, \mathrm{OCH}), 4.61-4.71(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH})_{2}\right), 4.99(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.18-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}(75.5 \mathrm{MHz})-5.5,-5.4,8.2,11.2,25.9,29.2,30.7,35.9$, $41.9,55.6,63.4,113.0,127.5,129.8,129.9,135.1,146.3,173.8$ and 176.6; m/z (EI) $390\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 10 \%\right), 190$ (16), 157 (51) and 75 (100).
(-)-(2S,3S)-4-[2-(tert-Butyldimethylsiloxy)ethyl]-3-hydroxy- N -methoxy- $N, 2$-dimethylpent-4-enamide 29
A suspension of N, O-dimethylhydroxylamine hydrochloride $(1.37 \mathrm{~g}, 14.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was treated with AlMe_{3} ($7.14 \mathrm{~cm}^{3}, 14.3 \mathrm{mmol} ; 2.0 \mathrm{~m}$ solution in toluene) at $0^{\circ} \mathrm{C}$ which resulted in the evolution of CH_{4} gas. The clear solution was stirred at RT for 30 min and a solution of oxazolidinone 28 $(2.10 \mathrm{~g}, 4.69 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was then cannulated into the reaction vessel at $0^{\circ} \mathrm{C}$. The resulting yellow solution was stirred at this temperature for 3.5 h and was then quenched with $100 \mathrm{~cm}^{3}$ of 0.5 m aq. dipotassium tartrate. The mixture was stirred at RT for 2 h until the aqueous layer became clear. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layer was washed successively with saturated aq. NaHCO_{3} and brine, and the crude product was purified by flash chromatography using 30% EtOAc-light petroleum to give the amide $29(1.33 \mathrm{~g}, 86 \%)$ as a gum; $[a]_{\mathrm{D}}^{20}-20.3\left(c 0.19, \mathrm{CHCl}_{3}\right)$ (Found: C, 57.7; H, 10.2, N, 4.2. $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{NO}_{4}$ Si requires C, 58.0; H, 10.0; N, 4.2%); $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3515(\mathrm{OH}), 2927,2854,1779$ (CO), 1770 (CO), 1468, 1383, 1288, 1248, 1209, 1081 and $836 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$) $0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.15(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{Me})$, 2.12-2.36 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$), $3.05(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 3.18$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.68-3.80 ($2 \mathrm{H}, \mathrm{m}$), 3.70 ($3 \mathrm{H}, \mathrm{s}$, NOMe), 4.22 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.32(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OCH}), 4.97\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $5.20\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz})-5.4,11.2,18.3,25.9$, 29.7, 35.9, 37.8, 61.5, 63.4, 74.2, 113.0, 145.6 and 177.4; m/z (EI) $331\left(\mathrm{M}^{+}, 1 \%\right), 274$ (57) and 157 (33).

(-)-(2S,3S)-4-[2-(tert-Butyldimethylsiloxy)ethyl]-3-hydroxy-2-methyl-1-phenylpent-4-en-1-one 30

To a solution of amide $29(244 \mathrm{mg}, 0.736 \mathrm{mmol})$ in THF $\left(8 \mathrm{~cm}^{3}\right)$ was added $\mathrm{PhMgCl}\left(2.21 \mathrm{~cm}^{3}, 4.42 \mathrm{mmol} ; 2.0 \mathrm{~m}\right.$ solution in THF) dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to
warm to RT and was stirred for 16 h . The solution was diluted with diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$, and ice-cold 5% aq. $\mathrm{HCl}\left(15 \mathrm{~cm}^{3}\right)$ was added. The organic layer was washed successively with saturated aq. NaHCO_{3} and brine, dried, concentrated, and purified by flash chromatography using 10% EtOAc-light petroleum as eluent to give phenyl ketone $\mathbf{3 0}(190 \mathrm{mg}, 74 \%)$ as a clear oil; $[\alpha]_{\mathrm{D}}^{20}-9.6$ (c 0.44 in CHCl_{3}) (Found: C , 68.8; H, 9.3. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$ Si requires C, 68.9; H, 9.25\%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3403$ $(\mathrm{OH}), 2923,2855,1679(\mathrm{CO}), 1603,1469,1254,1093$ and 835; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.27$ $(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 2.14-2.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 3.65-3.79$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTBS}\right.$ and $\left.2-\mathrm{H}\right), 3.90(1 \mathrm{H}, \mathrm{d}, J 3.2, \mathrm{OH}), 4.48(1 \mathrm{H}$, br t, J 3.9, $\mathrm{C} H \mathrm{OH}), 4.94\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.41-7.95(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz})-5.4,12.5,18.2$, $25.9,35.9,43.9,63.7,74.6,113.9,115.3,128.4,128.7,129.6$, 135.4, 146.6 and 204.8.

(4S,5S,6RS)-4-\{1-[2-(tert-Butyldimethylsiloxy)ethyl|vinyl\}-2,2,5-trimethyl-6-phenyl-1,3-dioxane 31

To a solution of ketone $\mathbf{3 0}(186 \mathrm{mg}, 0.534 \mathrm{mmol})$ in ethanol (7 $\left.\mathrm{cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(40.4 \mathrm{mg}, 1.07 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred for 30 min . The reaction mixture was concentrated, and diluted with diethyl ether $\left(40 \mathrm{~cm}^{3}\right)$. Water (10 cm^{3}) was added at $0{ }^{\circ} \mathrm{C}$, followed by the addition of ice-cold 2% HCl until the aqueous layer was acidic. The organic layer was washed successively with saturated aq. NaHCO_{3} and brine, and dried to afford the corresponding diol ($187 \mathrm{mg}, 100 \%$) as a clear oil which ${ }^{1} \mathrm{H}$ NMR analysis showed to be a $3: 1$ mixture of diastereoisomers. To a solution of this diol $(143 \mathrm{mg}, 0.40 \mathrm{mmol})$ in acetone $\left(5 \mathrm{~cm}^{3}\right)$ were added 2,2-dimethoxypropane $\left(2.25 \mathrm{~cm}^{3}\right.$, $29.8 \mathrm{mmol})$ and PPTS ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$). The reaction mixture was stirred overnight at RT then was taken up in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$-water $\left(10 \mathrm{~cm}^{3}\right)$. The organic layer was washed in turn with saturated aq. NaHCO_{3} and brine. Purification of the crude product by flash chromatography using $3 \% \mathrm{EtOAc}$-light petroleum as eluent afforded acetonide $\mathbf{3 1}(127 \mathrm{mg}, 81 \%)$ as a viscous oil (Found: C, 71.0; H, 10.0. $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3}$ Si requires C , $70.7 ; \mathrm{H}, 9.8 \%)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2952,2855,1377,1251,1098$ and $835 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.54(3 \mathrm{H}, J 7.1, \mathrm{Me})$, $0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.57(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.80-$ $2.00(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.20-2.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.73-3.85(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{OTBS}\right), 4.65(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}), 4.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.19(1 \mathrm{H}$, $\mathrm{d}, J 0.9, \mathrm{OCH}), 5.20\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.23-7.34(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$. The minor isomer showed peaks at $\delta_{\mathrm{H}} 0.09(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{2}\right), 0.81(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me}), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.46(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me})$ and $1.50(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz})-5.3,5.4,19.5,26.0$, $30.0,35.8,35.9,62.8,74.3,74.5,99.2,110.7,125.5,126.8,126.9$, 128.0, 128.4 and $144.5 ; \mathrm{m} / \mathrm{z}$ (EI) $275\left(\mathrm{M}^{+}-\right.$OTBDMS, 1%), 169 (24), 157 (34) and 129 (38).

(-)-(3S,4R)-2-[2-(tert-Butyldimethylsiloxy)ethyl]-4-methyl-5-phenylpent-1-en-3-ol 32

Li metal ($40 \mathrm{mg}, 5.76 \mathrm{mmol}$) was dissolved in liquid ammonia at $-78{ }^{\circ} \mathrm{C}$. To the blue solution was added a solution of the acetonide 31 ($177 \mathrm{mg}, 0.453 \mathrm{mmol}$) in THF $\left(5 \mathrm{~cm}^{3}\right)$. After stirring of the mixture at $-78^{\circ} \mathrm{C}$ for 10 min , the reaction was quenched carefully with $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue colour had been discharged. The mixture was diluted with diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ and stirred at R for 2.5 h . The suspension was filtered off through a filter aid, dried and concentrated. Purification by flash chromatography using 5% EtOAc-light petroleum as eluent afforded the alcohol $32(147 \mathrm{mg}, 97 \%)$ as a clear oil; $[\alpha]_{\mathrm{D}}^{20}$ $-18.0\left(c 1.70, \mathrm{CHCl}_{3}\right)$ (Found: C, 71.84; $\mathrm{H}, 10.23 . \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 71.8 ; \mathrm{H}, 10.2 \%)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3440(\mathrm{OH}), 2949$, 1453, 1251, 1188 and $836 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.88(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{Me}), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.87-1.97(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 2.16-2.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.78(1 \mathrm{H}, \mathrm{dd}, J 13.4$ and 5.6, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 2.95\left(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.63-3.83(2 \mathrm{H}, \mathrm{m}$, CH2OTBS $), 3.88(1 \mathrm{H}$, br $\mathrm{t}, J 5.4, \mathrm{CHOH}), 4.99(1 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.07\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.14-7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}(75.5 \mathrm{MHz})-5.5,-5.4,14.0,18.3,25.9,35.1,39.2,40.0$, $64.0,77.9,112.9,125.7,128.2,129.1,141.2$ and 148.9.

(-)-(1'S,2'R)-3-(1'-Benzyloxy-2'-methyl-3'-phenylpropyl)but-3-en-1-ol 33

To a solution of the alcohol $32(475 \mathrm{mg}, 1.42 \mathrm{mmol})$ in THF ($6 \mathrm{~cm}^{3}$) and DMF $\left(3 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added sodium hexamethyldisilazide (NaHMDS) ($1.85 \mathrm{~cm}^{3}, 1.85 \mathrm{mmol} ; 1.0 \mathrm{~m}$ solution in THF $). \mathrm{BnBr}\left(0.253 \mathrm{~cm}^{3}, 2.13 \mathrm{mmol}\right)$ was added and the solution was stirred overnight at RT. Diethyl ether and water were added and the organic fraction was washed successively with saturated aq. NaHCO_{3} and brine, and dried. Removal of the solvent left a pale yellow oil, which was dissolved in THF $\left(15 \mathrm{~cm}^{3}\right)$ and treated with TBAF $(742 \mathrm{mg}, 2.84 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 2 h at RT the reaction mixture was quenched with water and EtOAc. The organic fraction was washed in turn with saturated aq. NaHCO_{3} and brine, dried, and concentrated. The crude product was purified by flash chromatography using $20 \% \mathrm{EtOAc}$-light petroleum as eluent to provide the benzyl ether $33(351 \mathrm{mg}, 80 \%)$ as an oil; $[a]_{\mathrm{D}}^{20}-123.9$ (c $0.218, \mathrm{CHCl}_{3}$) (Found: C, $81.00 ; \mathrm{H}, 8.7 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, $81.25 ; \mathrm{H}, 8.4 \%)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3379(\mathrm{OH}), 2925,2866,1599$, $1492,1450,1203,1027$ and $745 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.91(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\mathrm{Me}), 1.96-2.08\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.16-2.47(4 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{dd}$, $J 12.0$ and $3.0, \mathrm{OH}), 3.50\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 3.65-3.85(2 \mathrm{H}$, $\left.\mathrm{CH} \mathrm{C}_{2} \mathrm{OH}\right), 4.28$ and $4.59(2 \mathrm{H}, \mathrm{ABq}, J 12.0,2-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.17\left(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.01-7.98(10 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 15.0,35.1,39.7,61.5,70.6,86.5,115.8$, 125.7, 126.9, 127.8, 128.1, 128.3, 128.4, 129.0, 138.3, 140.7 and 144.1; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 311\left(\mathrm{M}^{+}+\mathrm{H}, 100 \%\right), 293(61), 203(61)$ and 111 (73).

(-)-(3S,4R)-3-Benzyloxy-2-(2-iodoethyl)-4-methyl-5-phenyl-pent-1-ene 34

To a solution of the alcohol $33(244 \mathrm{mg}, 0.786 \mathrm{mmol})$ in diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$-acetonitrile $\left(3.7 \mathrm{~cm}^{3}\right)$ were added imidazole (83 $\mathrm{mg}, 1.22 \mathrm{mmol}), \mathrm{PPh}_{3}(231 \mathrm{mg}, 0.88 \mathrm{mmol})$ and $\mathrm{I}_{2}(224 \mathrm{mg}, 0.88$ mmol) in 3 portions over a period of 3 min . The resulting orange-brown solution was stirred at RT for 2 h . Diethyl ether and 1.5 m aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were added and the aqueous phase was extracted with diethyl ether. The organic fraction was washed in turn with saturated aq. NaHCO_{3} and brine. Purification of the crude product by flash chromatography using $1.5 \% \mathrm{EtOAc}-$ light petroleum as eluent afforded iodide $34(274 \mathrm{mg}, 82 \%)$ as a clear oil; $[a]_{\mathrm{D}}^{20}-40.8\left(c 2.45, \mathrm{CHCl}_{3}\right)$ (Found: C, 60.3; H, 6.1. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{IO}$ requires C, $\left.60.0 ; \mathrm{H}, 6.0 \%\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.93(3 \mathrm{H}$, $\mathrm{d}, J 6.6, \mathrm{Me}), 1.88-2.02(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.29(1 \mathrm{H}, \mathrm{d}, J 9.3$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 2.34\left(1 \mathrm{H}, \mathrm{d}, J 9.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.49-2.78(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.29\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{I}\right), 3.54(1 \mathrm{H}, \mathrm{d}, J 6.3,3-\mathrm{H})$, 4.28 and $4.61\left(2 \mathrm{H}, \mathrm{ABq}, J 11.7, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.16(1 \mathrm{H}, \mathrm{d}, J 0.9$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.23\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.00-7.41(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;$ $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}) 2.9,14.9,35.7,37.9,39.9,70.6,85.5,114.5,125.8$, $127.4,127.7,128.3,128.7,129.0,138.6,140.8$ and $145.6 ; \mathrm{m} / \mathrm{z}$ (CI) $421\left(\mathrm{M}^{+}+\mathrm{H}, 5 \%\right), 313$ (100), 293 (56) and 185 (55).
$[1 S(1 \alpha, 3 \alpha \beta, 5 \alpha, 7 \beta)]-6,7-$ Dibenzyloxy-1-\{3'-[(1"S,2"R)-1"-
benzyloxy- $2^{\prime \prime}$-methyl- $3^{\prime \prime}$-phenylpropyl]but- 3^{\prime}-enyl $\}-3$ -
hydroxymethyl-5-(methoxymethoxymethyl)-2,8dioxabicyclo[3.2.1]octane 36
To a freeze-thaw-degassed $(\times 3)$ solution of the iodide 34 (164 $\mathrm{mg}, 0.390 \mathrm{mmol})$ in diethyl ether $\left(2.3 \mathrm{~cm}^{3}\right)$-hexane $\left(1.6 \mathrm{~cm}^{3}\right)$ under argon was added $\mathrm{Bu}{ }^{t} \mathrm{Li}\left(0.505 \mathrm{~cm}^{3}, 0.858 \mathrm{mmol} ; 1.7 \mathrm{~m}\right.$ solution in pentane) at $-78^{\circ} \mathrm{C}$. After stirring of the mixture for 5 min , a solution of the lactone $24(106 \mathrm{mg}, 0.218 \mathrm{mmol})$ in freeze-thaw-degassed $(\times 3)$ diethyl ether $\left(2 \mathrm{~cm}^{3}\right)$-hexane $\left(1 \mathrm{~cm}^{3}\right)$ was added to the reaction vessel via cannula. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min after which time a precipitate had formed. After being stirred for 30 min at $0^{\circ} \mathrm{C}$ the
reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with diethyl ether and the organic layer was washed in turn with saturated aq. NaHCO_{3} and brine, and dried. Removal of the solvent left a yellow oil, which was purified by flash chromatography using $10-20 \%$ EtOAc-light petroleum as gradient eluent to give the addition product 35 ($82 \mathrm{mg}, 48 \%$). The diastereoisomeric lactols $35(44 \mathrm{mg}, 56 \mu \mathrm{~mol})$ were dissolved in methanol $\left(2.0 \mathrm{~cm}^{3}\right)$ and treated with $0.6 \mathrm{~cm}^{3}$ of $10 \% \mathrm{HCl}$. The resulting clear solution was stirred for 2 h at RT and the reaction was quenched by the dropwise addition of saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether. The organic layer was washed successively with saturated aq. NaHCO_{3} and brine, dried, and concentrated to give an oil. The crude product was purified on silica gel with 20-40-60\% EtOAc-light petroleum as gradient eluent to give the bicycle $\mathbf{3 6}(27 \mathrm{mg}, 67 \%)$ as an oil (Found: C, 74.6; H, 7.6. $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{O}_{8}$ requires C, $74.8 ; \mathrm{H}, 7.5 \%$); $\delta_{\mathrm{H}}(400 \mathrm{MHz})(3: 1$ mixture of C-3 epimers) $0.86(3 \mathrm{H}, \mathrm{d}, J 4.8$, $\mathrm{Me}), 1.54(1 \mathrm{H}, \mathrm{dd}, J 13.2$ and $4.0, \mathrm{CH}), 1.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $1.82-2.04(6 \mathrm{H}, \mathrm{m}), 2.21-2.47(3 \mathrm{H}, \mathrm{m}), 2.63-2.69(1 \mathrm{H}, \mathrm{m}), 3.32$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.45-3.54(1 \mathrm{H}, \mathrm{m}), 3.62-3.82(3 \mathrm{H}, \mathrm{m}), 3.89(1 \mathrm{H}$, d, $J 1.6, \mathrm{C} H \mathrm{OBn}$), $3.94(1 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{C} H \mathrm{OBn}), 4.18(1 \mathrm{H}, \mathrm{d}, J$ 12.0, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.33-4.39(1 \mathrm{H}, \mathrm{m}), 4.44-4.67(6 \mathrm{H}, \mathrm{m}), 5.00$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.03\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right.$ and $7.03-7.36(20 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$. The minor isomer showed peaks at $\delta_{\mathrm{H}} 0.87(1 \mathrm{H}, \mathrm{d}, J 4.8$, $\mathrm{Me}), 3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $4.19\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{OCH}_{2} \mathrm{Ph}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 14.8,14.9,24.1,24.5,29.7,31.2,32.2,35.5,36.5$, 37.7, 40.0, 55.4, 55.5, 64.2, 65.8, 68.4, 68.4, 69.5, 69.5, 70.3, $71.8,72.2,72.7,77.3,82.1,82.2,86.2,86.4,86.9,88.3,88.4$, $90.0,96.8,96.9,103.8,104.2,112.3,125.7,127.3,127.6,127.7$, 127.8, 127.9, 127.9, 128.0, 128.1, 128.2, 128.4, 128.6, 129.1, 137.6, 137.8, 139.0, 144.1 and 146.72.

(-)-[1S(1 $, 3 \alpha, 5 \alpha, 6 \alpha, 7 \beta)]-6,7-$ Dibenzyloxy-1-\{3'-[($\left.1^{\prime \prime} S, 2^{\prime \prime} R\right)-1^{\prime \prime}-$ benzyloxy-2"-methyl-3"-phenylpropyl]but-3'-enyl\}-5-(methoxymethoxymethyl)-2,8-dioxabicyclo[3.2.1] octane-3carboxylic acid methyl ester 37

To a stirred solution of the bicyclic alcohol $36(27 \mathrm{mg}, 37.3$ $\mu \mathrm{mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ were added pyridine $\left(0.016 \mathrm{~cm}^{3}\right.$, $187 \mu \mathrm{~mol})$ and Dess-Martin periodinane ($46 \mathrm{mg}, 122 \mu \mathrm{~mol}$) and the resulting suspension was stirred at RT for 4 h . Diethyl ether and water were added and the organic layer was stirred successively with 1.5 m aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated aq. NaHCO_{3} until two clear layers had formed. The organic layer was then washed with brine, dried, and concentrated to give the crude aldehyde. A solution of this crude aldehyde ($25 \mathrm{mg}, 34.7 \mu \mathrm{~mol}$) in $\mathrm{Bu}^{t} \mathrm{OH}\left(3 \mathrm{~cm}^{3}\right)$ and 2-methylbut-2-ene $\left(0.9 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{NaClO}_{2}(232 \mathrm{mg}, 2.56 \mathrm{mmol})$ and sodium dihydrogen orthophosphate ($178 \mathrm{mg}, 1.14 \mathrm{mmol}$) as a solution in $1.7 \mathrm{~cm}^{3}$ of water and the reaction mixture was stirred overnight at RT. Diethyl ether and water were added and the organic layer was washed with brine, dried, and concentrated. Treatment of the crude acid with an excess of diazomethane followed by purification by preparative TLC using 20% EtOAc-light petroleum as the eluent afforded methyl ester $37(17 \mathrm{mg}, 61 \%)$ as an oil; $[a]_{\mathrm{D}}^{20}$ $-2.2\left(c 0.59, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+}, 750.3735 . \mathrm{C}_{46} \mathrm{H}_{54} \mathrm{O}_{9}$ requires M, 750.3762); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2922$, 2851, 1733 (CO), 1451, $1178,1045,1026$ and $737 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.86(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me})$, 1.93-2.38 (8H, m), $2.66\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.5.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.31$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.47\left(1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime \prime}-\mathrm{H}\right), 3.64$ and $3.75(2 \mathrm{H}, \mathrm{ABq}$, $\left.J 10.4, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.89(1 \mathrm{H}, \mathrm{d}, J$ 2.0, CHOBn), $3.93(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{CHOBn}), 4.17$ and $4.51(2 \mathrm{H}$, $\left.\mathrm{ABq}, J 12.0, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.44$ and $4.59(2 \mathrm{H}, \mathrm{ABq}, J 11.6$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.47-4.64(4 \mathrm{H}, \mathrm{m}), 4.89(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 3.6 , $\left.\mathrm{CHCO} \mathrm{C}_{2} \mathrm{Me}\right), 5.01\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.03\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.02-7.37(20 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 14.4,24.2,33.2,34.8$, $37.2,39.7,51.9,55.1,67.9,68.0,70.0,71.8,72.5,82.0,85.8$, 86.1, 89.2, 96.5, 104.2, 111.9, 125.3, 126.9, 127.3, 127.4, 127.5, 127.6, 127.8, 127.9, 128.1, 128.8, 137.0, 137.3, 138.7, 140.8, 146.2 and 171.1; m/z (EI) $675\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OMOM}, 4 \%\right), 303$ (3), 247 (8), 181 (9), 141 (8) and 91 (100).

Acknowledgements

We thank the Australian Research Council for financial support.

References

1 P. J. Sidebottom, R. M. Highcock, S. J. Lane, P. A. Procopiou and N. S. Watson, J. Antibiot., 1992, 45, 648.

2 J. D. Bergstrom, M. M. Kurtz, D. J. Rew, A. M. Amend, J. D. Karkas, R. G. Bostedor, V. S. Bansal, C. Dufresne, F. L. VanMiddlesworth, O. D. Hensens, J. M. Liesch, D. L. Zink, K. E. Wilson, J. Onishi, J. A. Milligan, G. Bills, L. Kaplan, M. Nallin Omstead, R. G. Jenkins, L. Huang, M. S. Meinz, L. Quinn, R. W. Burg, Y. L. Kong, S. Mochales, M. Mojena, I. Martin, F. Pelaez, M. T. Diez and A. W. Alberts, Proc. Natl. Acad. Sci. USA, 1993, 90, 80; K. E. Wilson, R. M. Burk, T. Biftu, R. G. Ball and K. Hoogsteen, J. Org. Chem., 1992, 57, 7151.
3 A. Baxter, B. J. Fitzgerald, J. L. Hutson, A. D. McCarthy, J. M. Motteram, B. C. Ross, M. Sapra, M. A. Snowden, N. S. Watson, R. J. Williams and C. Wright, J. Biol. Chem., 1992, 267, 11705.

4 C. D. Poulter and H. C. Rilling, in Biosynthesis of Isoprenoid Compounds, ed. J. W. Porter and S. L. Spurgeon, Wiley, New York, 1981, vol. 1, p. 414.
5 For a review on the chemistry and biology of the zaragozic acids/ squalestatins see A. Nadin and K. C. Nicolaou, Angew. Chem., Int. Ed. Engl., 1996, 35, 1622.
6 (a) H. Abdel-Rahman, J. P. Adams, A. L. Boyes, M. J. Kelly, D. J. Mansfield, P. A. Procopiou, S. M. Roberts, D. H. Slee, P. J. Sidebottom, V. Sik and N. S. Watson, J. Chem. Soc., Chem. Comтип., 1993, 1841; (b) V. K. Aggarwal, M. F. Wang and A. Zaparucha, J. Chem. Soc., Chem. Commun., 1994, 87; (c) L. M. McVinish and M. A. Rizzacasa, Tetrahedron Lett., 1994, 35, 923; (d) M. K. Gurjar, S. K. Das and U. K. Saha, Tetrahedron Lett., 1994, 35, 2241; (e) H. Koyama, R. G. Ball and G. D. Berger, Tetrahedron Lett., 1994, 35, 9185; (f) M. K. Gurjar, S. K. Das and K. S. Sadalapure, Tetrahedron Lett., 1995, 36, 1933; (g) M. K. Gurjar, S. K. Das and K. S. Kunwar, Tetrahedron Lett., 1995, 36, 1937; (h) G. A. Kraus and H. Maeda, J. Org. Chem., 1995, 60, 2; (i) S. Caron, A. I. McDonald and C. H. Heathcock, J. Org. Chem., 1995, 60, 2780; (j) R. H. Schlessinger, X.-H. Wu and T. R. R. Pettus, Synlett, 1995, 536; (k) A. Armstrong and P. A. Barsanti, Synlett, 1995, 903; (l) N. Maezaki, H. J. M. Gijsen, L.-Q. Sun and L. A. Paquette, J. Org. Chem., 1996, 61, 6685; (m) K. D. Freeman-Cook and R. L. Halcomb, Tetrahedron Lett., 1996, 37, 4883; (n) I. Paterson, K. Feßner, M. R. V. Finlay and M. F. Jacobs, Tetrahedron Lett., 1996, 37, 8803; (o) Y. Xu and C. R. Johnson, Tetrahedron Lett., 1997, 38, 1117; (p) I. Paterson, K. Feßner and M. R. V. Finlay, Tetrahedron Lett., 1997, 38, 4301; (q) S. G. Hegde and D. C. Myles, Tetrahedron Lett., 1997, 38, 4329.
7 E. M. Carreira and J. Du Bois, J. Am. Chem. Soc., (a) 1994, 116, 10 825; (b) 1995, 117, 8106.
8 K. C. Nicolaou, E. W. Yue, Y. Naniwa, F. De Riccardis, A. Nadin, J. E. Leresche, S. La Greca and Z. Yang, Angew. Chem., Int. Ed. Engl., 1994, 33, 2184; K. C. Nicolaou, A. Nadin, J. E. Leresche, S. La Greca, T. Tsuri, E. W. Yue and Z. Yang, Angew. Chem., Int. Ed. Engl., 1994, 33, 2187; K. C. Nicolaou, A. Nadin, J. E. Leresche, E. W. Yue and S. La Greca, Angew. Chem., Int. Ed. Engl., 1994, 33, 2190; K. C. Nicolaou, E. W. Yue, S. La Greca, A. Nadin, Z. Yang, J. E. Leresche, T. Tsuri, Y. Naniwa and F. De Riccardis, Chem. Eur. J., 1995, 1, 467.

9 D. A. Evans, J. C. Barrow, J. L. Leighton, A. J. Robichaud and M. Sefkow, J. Am. Chem. Soc., 1994, 116, 12111.

10 D. Stoermer, S. Caron and C. H. Heathcock, J. Org. Chem., 1996, 61, 9115 ; S. Caron, D. Stoermer, A. K. Mapp and C. H. Heathcock, J. Org. Chem., 1996, 61, 9126.

11 H. Sato, S. Nakamura, N. Watanabe and S. Hashimoto, Synlett, 1997, 451.
12 P. A. Procopiou and N. S. Watson, Prog. Med. Chem., 1996, 33, 331.
13 T. Biftu, J. J. Acton, G. D. Berger, J. D. Bergstrom, C. Dufresne, M. M. Kurtz, R. W. Marquis, W. H. Parsons, D. R. Rew and K. E. Wilson, J. Med. Chem., 1994, 37, 421.

14 C. Chan, D. Andreotti, B. Cox, B. W. Dymcock, J. L. Hutson, S. E. Keeling, A. D. McCarthy, P. A. Procopiou, B. C. Ross, M. Sareen, J. J. Scicinski, P. J. Sharratt, M. A. Snowden and N. S. Watson, J. Med. Chem., 1996, 39, 207.

15 P. A. Procopiou, E. J. Bailey, J. L. Huston, B. E. Kirk, P. J. Sharratt, S. J. Spooner and N. S. Watson, BioMed. Chem. Lett., 1993, 3, 2527.

16 Preliminary communication: J. G. Parsons and M. A. Rizzacasa, Tetrahedron Lett., 1994, 35, 8263.

17 R. E. Ireland and R. H. Mueller, J. Am. Chem. Soc., 1972, 94 5897; Review: S. Pereira and M. Srebnik, Aldrichim. Acta, 1993, 26, 17.
18 R. E. Ireland and D. W. Norbeck, J. Am. Chem. Soc., 1985, 107 3279.

19 R. W. Gable, L. M. McVinish and M. A. Rizzacasa, Aust. J. Chem., 1994, 47, 1537.
20 D. D. Dhavale, E. Tagliavini, C. Trombini and A. Umani-Ronchi, J. Org. Chem., 1989, 54, 4100.

21 H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483.
22 R. E. Ireland, C. S. Wilcox and S. Thaisrivongs, J. Org. Chem., 1978, 43, 786.
23 K. Chow and S. Danishefsky, J. Org. Chem., 1990, 55, 4211.
24 E. J. Corey and J. W. Suggs, J. Org. Chem., 1973, 38, 3224.
25 Addition of methyllithium to the corresponding C-6,7-bisTBDMSprotected lactone and the C-6-benzyl C-7-TBDMS lactone was less efficient: M. A. Rizzacasa and J. G. Parsons, unpublished work.
26 P. G. McDougal, J. G. Rico, Y.-I. Ohand and B. D. Condon, J. Org. Chem., 1986, 51, 3388.

27 S. Takano, K. Inomota, K. Samizu, S. Tomita, M. Yanase, M. Suzuki, Y. Iwabuchi, T. Sugihara and K. Ogasawara, Chem. Lett., 1989, 1283.
28 D. A. Evans, J. Bartroli and T. L. Shih, J. Am. Chem. Soc., 1981, 103, 2127.

29 J. R. Gage and D. A. Evans, Org. Synth., 1989, 68, 83.
30 A. Basha, J. L. Lipton and S. M. Weinreb, Tetrahedron Lett., 1977, 4171; D. A. Evans, S. L. Bender and J. Morris, J. Am. Chem. Soc., 1988, 110, 2506.
31 A. J. Robichaud, G. D. Berger and D. A. Evans, Tetrahedron Lett., 1993, 34, 8403.
32 E. J. Corey, S. G. Pyne and W. Su, Tetrahedron Lett., 1983, 24, 4883.
33 W. F. Bailey and E. R. Punzalen, J. Org. Chem., 1990, 55, 5404.
34 D. B. Dess and J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277
35 B. O. Lindgren and T. Nilsson, Acta Chem. Scand., 1973, 27, 888.

Paper 7/08187A
Received 13th November 1997 Accepted 13th January 1998

